Oggi ti parlerò di un argomento mooooolto interessante ma anche complicato, perché si tratta di una di quegli argomenti di cui senti parlare ovunque ma che alla fine della fiera non si capisce mai nulla.

Non ti preoccupare, cercherò di toglierti ogni tuo dubbio 😛

Ok, sono pronto. Spara questo argomento!

Sto parlando di Machine Learning.

Il primo a dare una definizione di Machine Learning fu Arthur Samuel nel 1959: “Il campo di studi che dà ai computer l’abilità di imparare senza che siano stati programmati per farlo“.

Sembra fantascienza ma non lo è.

In realtà, anche se negli anni il concetto di Machine Learning si è ampliato e modificato in una serie di nuove aeree e concetti, il suo obiettivo principale è rimasto lo stesso, e cioè quello di fare in modo che i computer riescano a trovare informazioni strategiche senza che siano stati programmati per farlo, ma, al contrario, imparino da algoritmi che si aggiornano ripetutamente grazie ai dati.

Esempi dove viene utilizzato il Machine Learning

Sì ok, tutto bello, ma questo Machine Learning dove si trova? In realtà, è applicato nella vita di tutti i giorni e in cose ormai considerate per nulla fantascientifiche. Alcuni esempi: all’interno delle auto a guida autonoma di Google o gli strumenti di raccomandazione online (per esempio le amicizie suggerite su Facebook, i consigli di acquisto di Amazon, i film suggeriti di Netflix, ecc. ).

E questo è solo l’inizio.

Il Machine Learning è arrivato a livelli molto sofisticati, infatti al contrario di anni fa, dove elaborare molti dati era complesso, ora è possibile analizzare grossi volumi di dati senza problemi. Il tutto grazie a degli algoritmi che processano le informazioni in real time, con analisi e risultati precisi.

Ma come impara questo Machine Learning?

Ci sono tre metodi principali:

  1. Supervised Learning: quando gli input e gli output sono chiaramente identificabili, e l’obiettivo è quello di trovare l’errore. È utilizzato in quei casi dove i dati storici possono predire gli eventi futuri, come le transazioni fraudolente.
  2. Unsupervised Learning: al contrario, in questo caso, non esistono i dati storici e lo scopo è quello di trovare dei pattern all’interno dei dati. Viene utilizzato per creare cluster degli utenti e segmentarli in base a determinati attributi.
  3. Semi-Supervised Learning: è un mix tra i primi due metodi, un esempio dove viene utilizzato è per i riconoscimenti vocali e facciali.

Interessante, vero?

Fammi sapere cosa ne pensi nei commenti!

PS: Ma Google Tag Manager cosa c’entra?! E se ti dicessi che è possibile inserire alcuni algoritmi nelle pagine web con GTM? Curioso? 😛

A presto e… Buon Tag!

Link Utili:

Machine Learning Approfondimento

Machine Learning Wikipedia

Condividi anche tu Google Tag Manager!

Hai ancora qualche dubbio?
Chiedi pure qui sotto, sarò pronto a risponderti!

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.